Picture
Hukum gerak Newton
Hukum gerak Newton adalah  hukum fisika yang menjadi dasar mekanika kliasik Hukum ini menggambarkan hubungan antara gaya yang bekerja pada suatu benda dan gerak yang disebabkannya. yaitu:

1. Hukum pertama Newton
Hukum I: "Setiap benda akan mempertahankan keadaan diam atau bergerak lurus beraturan, kecuali ada gaya yang bekerja untuk mengubahnya".
Hukum ini menyatakan bahwa jika resultan gaya(jumlah vektor  dari semua gaya yang bekerja pada benda) bernilai nol, maka  kecepatan benda tersebut konstan. Dirumuskan secara matematis menjadi:
∑= 0


Artinya :

  • Sebuah benda yang sedang diam akan tetap diam kecuali ada resultan gaya yang tidak nol bekerja padanya.
  • Sebuah benda yang sedang bergerak, tidak akan berubah kecepatannya kecuali ada resultan gaya yang tidak nol bekerja padanya.
Hukum pertama newton adalah penjelasan kembali dari hukum inersia yang sudah pernah dideskripsikan oleh Galileo. Dalam bukunya Newton memberikan penghargaan pada Galileo untuk hukum ini. Aristoteles berpendapat bahwa setiap benda memilik tempat asal di alam semesta: benda berat seperti batu akan berada di atas tanah dan benda ringan seperti asap berada di langit. Bintang-bintang akan tetap berada di surga. Ia mengira bahwa sebuah benda sedang berada pada kondisi alamiahnya jika tidak bergerak, dan untuk satu benda bergerak pada garis lurus dengan kecepatan konstan diperlukan sesuatu dari luar benda tersebut yang terus mendorongnya, kalau tidak benda tersebut akan berhenti bergerak. Tetapi Galileo menyadari bahwa gaya diperlukan untuk mengubah kecepatan benda tersebut (percepatan), tapi untuk mempertahankan kecepatan tidak diperlukan gaya. Sama dengan hukum pertama Newton : Tanpa gaya berarti tidak ada percepatan, maka benda berada pada kecepatan konstan.

Picture
2.  Hukum kedua Newton
Hukum Kedua:" Perubahan dari gerak selalu berbanding lurus terhadap gaya yang dihasilkan / bekerja, dan memiliki arah yang sama dengan garis normal dari titik singgung gaya dan benda."
F = m.a
Dengan F adalah total gaya yang bekerja, m adalah massa benda, dan a adalah percepatan benda. Maka total gaya yang bekerja pada suatu benda menghasilkan percepatan yang berbanding lurus.

Massa yang bertambah atau berkurang dari suatu sistem akan mengakibatkan perubahan dalam momentum. Perubahan momentum ini bukanlah akibat dari gaya. Untuk menghitung sistem dengan massa yang bisa berubah-ubah, diperlukan persamaan yang berbeda.

Sesuai dengan hukum pertama, turunan momentum terhadap waktu tidak nol ketika terjadi perubahan arah, walaupun tidak terjadi perubahan besaran. Contohnya adalah gerak melingkar beraturan. Hubungan ini juga secara tidak langsung menyatakan kekekalan momentum: Ketika resultan gaya yang bekerja pada benda nol, momentum benda tersebut konstan. Setiap perubahan gaya berbanding lurus dengan perubahan momentum tiap satuan waktu.


Picture
3. Hukum ketiga Newton
”“Hukum ketiga : Untuk setiap aksi selalu ada reaksi yang sama besar dan berlawanan arah: atau gaya dari dua benda pada satu sama lain selalu sama besar dan berlawanan arah.”Benda apapun yang menekan atau menarik benda lain mengalami tekanan atau tarikan yang sama dari benda yang ditekan atau ditarik. Kalau anda menekan sebuah batu dengan jari anda, jari anda juga ditekan oleh batu. Jika seekor kuda menarik sebuah batu dengan menggunakan tali, maka kuda tersebut juga "tertarik" ke arah batu: untuk tali yang digunakan, juga akan menarik sang kuda ke arah batu sebesar ia menarik sang batu ke arah kuda.

Hukum ketiga ini menjelaskan bahwa semua gaya adalah interaksi antara benda-benda yang berbeda, maka tidak ada gaya yang bekerja hanya pada satu benda. Jika benda A mengerjakan gaya pada benda B, benda B secara bersamaan akan mengerjakan gaya dengan besar yang sama pada benda A dan kedua gaya segaris. Seperti yang ditunjukan di diagram, para peluncur es (Ice skater) memberikan gaya satu sama lain dengan besar yang sama, tapi arah yang berlawanan. Walaupun gaya yang diberikan sama, percepatan yang terjadi tidak sama. Peluncur yang massanya lebih kecil akan mendapat percepatan yang lebih besar karena hukum kedua Newton. Dua gaya yang bekerja pada hukum ketiga ini adalah gaya yang bertipe sama. Misalnya antara roda dengan jalan sama-sama memberikan gaya gesek.

Secara sederhananya, sebuah gaya selalu bekerja pada sepasang benda, dan tidak pernah hanya pada sebuah benda. Jadi untuk setiap gaya selalu memiliki dua ujung. Setiap ujung gaya ini sama kecuali arahnya yang berlawanan. Atau sebuah ujung gaya adalah cerminan dari ujung lainnya.

Secara matematis, hukum ketiga ini berupa persamaan vektor satu dimensi, yang bisa dituliskan sebagai berikut. Asumsikan benda A dan benda B memberikan gaya terhadap satu sama lain.
 
Dengan
 ∑a,b=∑b,a
Fa,b adalah gaya-gaya yang bekerja pada A oleh B, danFb,a adalah gaya-gaya yang bekerja pada B oleh A.Newton menggunakan hukum ketiga untuk menurunkan hukum kekekalan momentum,[21] namun dengan pengamatan yang lebih dalam, kekekalan momentum adalah ide yang lebih mendasar (diturunkan melalui teorema Noether dari relativitas Galileo dibandingkan hukum ketiga, dan tetap berlaku pada kasus yang membuat hukum ketiga newton seakan-akan tidak berlaku. Misalnya ketika medan gaya memiliki momentum, dan dalam mekanika kuantum.

Ketiga hukum ini juga merupakan pendekatan yang baik untuk benda-benda makroskopis dalam kondisi sehari-hari. Namun hukum newton (digabungkan dengan hukum gravitasi umum danelektrodinamika klasik) tidak tepat untuk digunakan dalam kondisi tertentu, terutama dalam skala yang amat kecil, kecepatan yang sangat tinggi (dalam relativitas khusussfaktor Lorentzmassa diam, dan kecepatan harus diperhitungkan dalam perumusan momentum) atau medan gravitasi yang sangat kuat. Maka hukum-hukum ini tidak dapat digunakan untuk menjelaskan fenomena-fenomena seperti konduksi listrik pada sebuah semikonduktor, sifat-sifat optik dari sebuah bahan, kesalahan pada GPS sistem yang tidak diperbaiki secara relativistik, dan superkonduktivitas. Penjelasan dari fenomena-fenomena ini membutuhkan teori fisika yang lebih kompleks, termasuk relativitas umum dan teori medan kuantum.

Dalam mekanika kuantum konsep seperti gaya, momentum, dan posisi didefinsikan oleh operator-operator linier yang beroperasi dalam kondisi kuantum, pada kecepatan yang jauh lebih rendah dari kecepatan cahaya, hukum-hukum Newton sama tepatnya dengan operator-operator ini bekerja pada benda-benda klasik. Pada kecepatan yang mendekati kecepatan cahaya, hukum kedua tetap berlaku seperti bentuk aslinya F = dpdt, yang menjelaskan bahwa gaya adalah turunan dari momentum suatu benda terhadap waktu, namun beberapa versi terbaru dari hukum kedua tidak berlaku pada kecepatan relativistik.

Hubungan dengan hukum kekekalan.
 Di fisika modern, hukum kekekalan dari momentumenergi, dan momentum sudut berlaku lebih umum daripada hukum-hukum Newton, karena mereka berlaku pada cahaya maupun materi, dan juga pada fisika klasik maupun fisika non-klasik.

Secara sederhana, "Momen, energi, dan momentum angular tidak dapat diciptakan atau dihilangkan."

Karena gaya adalah turunan dari momen, dalam teori-teori dasar (seperti mekanika kuantumelektrodinamika kuantumrelativitas umum, dsb.), konsep gaya tidak penting dan berada dibawah kekekalan momentum.

Model standar dapat menjelaskan secara terperinci bagaimana tiga gaya-gaya fundamental yang dikenal sebagai gaya-gaya gauge, berasal dari pertukaran partikel virtual. Gaya-gaya lain sepertigravitasi dan tekanan degenerasi fermionic juga muncul dari kekekalan momentum. Kekekalan dari 4-momentum dalam gerak inersia melalui ruang-waktu terkurva menghasilkan yang kita sebut sebagai gaya gravitasi dalam teori relativitas umum.

Kekekalan energi baru ditemukan setelah hampir dua abad setelah kehidupan Newton, adanya jeda yang cukup panjang ini disebabkan oleh adanya kesulitan dalam memahami peran dari energi mikroskopik dan tak terlihat seperti panas dan cahaya infra-merah.

Daftar Pustaka:http://id.wikipedia.org/wiki/Hukum_gerak_Newton

 


Comments




Leave a Reply